,而磁极却永远是南北极共存,无法分离。这正是双方对称性不相同的外在表现。 中国历史时间平移性维持了千年,同时保持了社会结构的对称。基本是上层建筑和底层民众,不同朝代的上层出现方式不同,汉:世家,晋、南朝:上品,北朝:门阀,隋:门阀(时间短是因为门阀反击杨广成功),唐:门阀->军阀。宋:贵族消失,进入市民时代,中国进入顶峰时期,或许会改变时间平移性。但蒙古人入侵,中国灭亡。 迦太基是腓尼基人的移民国家。腓尼基公主避祸来到突尼斯湾,向当地人求借一张牛皮的土地栖身。获准后将牛皮剪成长条,圈里一大块地,修建了迦太基城。虽然采用了骗术,但对公主的承诺依然有效,如果是个王子的话,估计就是当地女首领同意的结果。问题是,牛皮长条的长度固定,所圈的土地是何种形状才能保证面积最大呢?我们采用对称的方法来解决。a.从直觉来看,牛皮绳索同样长度对面积的贡献应该是相同的。这个意味着从土地内观察绳索,满足旋转对称。土地就是圆形。b.从推理的角度,我们必须逐渐细化分析过程,获知土地形状。定义:1凸域,凸域边缘任意两点连一条直线,必然属于内部区域,不会和边缘有交点.2边缘上某点和相距周长一半的另外一点的连线称为径。推理次序:b.1土地的形状必然是凸的,为什么?b.2径将土地分为两块,则两块的面积一定相等。b.3如果径点所在地边缘是直线段,则此线段必然和径垂直。使用镜像对称证明。b.4边缘不存在任何直线线段,边缘是弧形的。使用镜像对称证明。b.5弧形边缘的切线必然和切点对应的径垂直,使用镜像对称证明。b.6不存在某点是两段弧的交点,即此点存在两条切线,切线的夹角不等于180度。使用旋转180度对称证明。b.7任意多个径的交点为同一点。使用镜像对称证明。b.8径的交点平分径。使用镜像对称证明。b.9径的长度都相等,使用镜像对称证明(*)b.10满足以上条件的边缘就是圆,土地就是圆形。#(若不使用对称方法,则需要变分法来推理。) 按照上题的推理方式,证明固定面积所围的封闭空间体积最大的形状是球形。在球面上,两点距离最短的线是什么?(线必须在球面上,不能穿越内部空间)(定义其中一点为北极,按照地球情况来看,北极和任意一点之间最短的线是什么?)最长的线又是什么?如何使用对称原理来推理?国际航班路线,经常穿过若干个国家的领空,会发现穿过领空的国家在地图上似乎并不在航线起点和终点之间。 现实的空间边界难以精确界定,游戏中的空间通常都是精确的。以游戏人物的包裹为例,都是二维的离散格子组成的空间。装入的物品也是小型号的二维离散格子,那么在填充包裹时,如何才能包裹容纳效率最高?随便在包裹中乱放物品,剩余空间会变得非常破碎,导致虽有足够的剩余空间,但无法放置一个物品。剩余空间以何种指标指示,才能反映剩余空间的完整程度?如有可能,编程实现包裹自动安置物品,使得包裹可以最大程度地满置。 前面提到蜂巢,表现为正六边形,完整地布满整个平面。布满平面而没有缝隙的形状有正三角形,正方形和正六边形(事实上,正五边形和等腰三角形混合、正方形和正三角形混合、2种菱形混合都可以铺满平面不留缝隙)。当设定以最小的边长总和来划分某面积时,毫无疑问,最接近圆的形状满足条件,结论就是正六边形划分平面。所以蜜蜂的蜂巢就是这一结果,可以最节省建筑材料。 信息的对称问题。在变换中,如果初始的信息没有任何损失,全部存在于结果中,那么从结果可以反推初始信息。我们对世界的认识就是以这种信息的反推得到。如果变换中损失部分初始信息,那么从结果反推初始信息将有两种情况:1.无法反推。2.反推出多个初始信息。现代密码算法,避免破译的方法就是制造信息损失(损失的信息就是密码!)。通讯中的加密信号,还要和伪随机信号进行处理,得到近似随机信号,让信号进入彻底的热寂状态。加密过程的复杂程度和解密过程的复杂程度不对称(这些过程的通常名称叫算法),解密复杂程度更高,使得复原信息的代价大幅度增加,当代价大于信息的价值时,我们就认为加密是有效的。现实生活中说某人的城府深浅,也是信息隐藏的另类称呼。比如说胸有惊雷而面如平湖,隐藏对某信息的反应,以欺骗观察者。或假痴不癫,直接给出错误信息。我们的眼睛为什么是两只?我们观察的三维对象,进入我们的眼睛,投影在M.IYiGUO.net